Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates.
نویسندگان
چکیده
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates low density lipoprotein receptor (LDLR) protein levels and function. Loss of PCSK9 increases LDLR levels in liver and reduces plasma LDL cholesterol (LDLc), whereas excess PCSK9 activity decreases liver LDLR levels and increases plasma LDLc. Here, we have developed active, cross-species, small interfering RNAs (siRNAs) capable of targeting murine, rat, nonhuman primate (NHP), and human PCSK9. For in vivo studies, PCSK9 and control siRNAs were formulated in a lipidoid nanoparticle (LNP). Liver-specific siRNA silencing of PCSK9 in mice and rats reduced PCSK9 mRNA levels by 50-70%. The reduction in PCSK9 transcript was associated with up to a 60% reduction in plasma cholesterol concentrations. These effects were shown to be mediated by an RNAi mechanism, using 5'-RACE. In transgenic mice expressing human PCSK9, siRNAs silenced the human PCSK9 transcript by >70% and significantly reduced PCSK9 plasma protein levels. In NHP, a single dose of siRNA targeting PCSK9 resulted in a rapid, durable, and reversible lowering of plasma PCSK9, apolipoprotein B, and LDLc, without measurable effects on either HDL cholesterol (HDLc) or triglycerides (TGs). The effects of PCSK9 silencing lasted for 3 weeks after a single bolus i.v. administration. These results validate PCSK9 targeting with RNAi therapeutics as an approach to specifically lower LDLc, paving the way for the development of PCSK9-lowering agents as a future strategy for treatment of hypercholesterolemia.
منابع مشابه
A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates serum LDL cholesterol (LDL-C) by interacting with the LDL receptor (LDLR) and is an attractive therapeutic target for LDL-C lowering. We have generated a neutralizing anti-PCSK9 antibody, mAb1, that binds to an epitope on PCSK9 adjacent to the region required for LDLR interaction. In vitro, mAb1 inhibits PCSK9 binding to the LDLR a...
متن کاملAn Anti-PCSK9 Antibody Reduces LDL-Cholesterol On Top Of A Statin And Suppresses Hepatocyte SREBP-Regulated Genes
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a promising therapeutic target for treating coronary heart disease. We report a novel antibody 1B20 that binds to PCSK9 with sub-nanomolar affinity and antagonizes PCSK9 function in-vitro. In CETP/LDLR-hemi mice two successive doses of 1B20, administered 14 days apart at 3 or 10 mpk, induced dose dependent reductions in LDL-cholesterol (≥...
متن کاملNEW CLASS OF DRUGS: THERAPEUTIC RNAi INHIBITION OF PCSK9 AS A SPECIFIC LDL-C LOWERING THERAPY.
Hyperlipidemia is a well-known risk factor for coronary heart disease, the leading cause of death for both men and women. Current lipid-lowering treatment is not always efficient, therefore new pharmacological interventions that reduce LDL cholesterol (LDL-C) have been developed. This paper presents new class of specific LDL lipid-lowering drugs under investigation in phase II or III clinical t...
متن کاملTargeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis.
Hypercholesterolemia is a major risk factor for cardiovascular diseases, increasing the incidence of myocardial infarction and death. Statin-induced lowering of low-density lipoprotein cholesterol (LDL-C) reduces cardiovascular morbidity and mortality. However, many individuals treated with statins do not achieve their target levels of LDL-C, and thus, LDL-associated residual risk remains. Gain...
متن کاملProprotein convertase substilisin/kexin type 9 antagonism reduces low-density lipoprotein cholesterol in statin-treated hypercholesterolemic nonhuman primates.
Proprotein convertase substilisin/kexin type 9 (PCSK9) promotes the degradation of low-density lipoprotein (LDL) receptor (LDLR) and thereby increases serum LDL-cholesterol (LDL-C). We have developed a humanized monoclonal antibody that recognizes the LDLR binding domain of PCSK9. This antibody, J16, and its precursor mouse antibody, J10, potently inhibit PCSK9 binding to the LDLR extracellular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 33 شماره
صفحات -
تاریخ انتشار 2008